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Traditional Reinforcement Learning

Agent 
makes an 
observation 
of its 
environment
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Traditional Reinforcement Learning

Agent 
updates its 
internal state 
according to 
the 
observation
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Traditional Reinforcement Learning

Agent acts according to its policy
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Traditional Reinforcement Learning
Agent 
receives 
feedback 
(positive, 
negative, or 
neutral) for 
its action
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Traditional Reinforcement Learning

Cycle 
repeats…
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Main Limitation of this Approach

● Interacting in the environment can be expensive!
● State-of-the-art can take hundreds of thousands of episodes to learn



CS391R: Robot Learning (Fall 2022) 8

Big Question:

● Can we train our policies outside of the environment?
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Problem Setting
Working On Visual Control Problems (within DeepMind Control Suite)

● Formulate Visual Control as a Partially Observable Markov Decision Process (POMDP) with:

○ Discrete time-steps t ∈ [1; T]

○ Continuous vector-valued, agent-generated actions 

○ High-dimensional observations, scalar rewards generated by the environment 
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Prior Work
World Models (David Ha, Jurgen Schmidhuber (2018))

❖ Learn a dynamics model for a RL environment



CS391R: Robot Learning (Fall 2022) 11

Prior Work
World Models (David Ha, Jurgen Schmidhuber (2018))

❖ Learn a dynamics model for a RL environment

❖ The model’s latent space contains the key features, making learning an optimal policy easier



CS391R: Robot Learning (Fall 2022) 12

Prior Work
World Models (David Ha, Jurgen Schmidhuber (2018))

❖ Learn a dynamics model for a RL environment

❖ The model’s latent space contains the key features, making learning an optimal policy easier

❖ Can train a model entirely in the latent space



CS391R: Robot Learning (Fall 2022) 13

Prior Work
World Models (David Ha, Jurgen Schmidhuber (2018))

❖ Learn a dynamics model for a RL environment

❖ The model’s latent space contains the key features, making learning an optimal policy easier

❖ Can train a model entirely in the latent space

❖ Save training time and resources



CS391R: Robot Learning (Fall 2022) 14

Prior Work
Learning Latent Dynamics for Planning with Pixels (Hafner et. al (2019))

❖ Learn a dynamics model for different tasks in the DeepMind Control suite
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Prior Work
Learning Latent Dynamics for Planning with Pixels (Hafner et. al (2019))

❖ Learn a dynamics model for different tasks in the DeepMind Control suite

❖ Plan only using the latent space of the dynamics model (PlaNet)

❖ Generalize to include multi-step predictions in latent space

❖ Performance on par with current state-of-the-art model-free approaches, with ~200x less 

environment interactions

❖ Has to used gradient-free planning

❖ Cannot approximate sum of rewards beyond planning horizon



CS391R: Robot Learning (Fall 2022) 20

Main Contributions
● Iterative approach for exploring in the environment and gathering new observations

○ World Models paper randomly explored in the environment to create the dynamics model

○ Instead, explore the environment according to our current policy
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Main Contributions
● Iterative approach for exploring in the environment and gathering new observations

○ World Models paper randomly explored in the environment to create the dynamics model

○ Instead, explore the environment according to our current policy

● Rather than just predict actions given a state, predict state values

○ Allows for faster convergence to an optimal policy by learning long-horizon behaviors

○ Given value function setup allows for back propagation of value function through dynamics 

model’s latent space

● Demonstration of Efficacy of Approach

○ Pair Dreamer with different representation learning approaches

○ Analyze performance in the DeepMind Control Suite

○ Exhibit state-of-the-art performance using the same hyperparameters for every task
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Proposed Approach



CS391R: Robot Learning (Fall 2022) 24

Proposed Approach



CS391R: Robot Learning (Fall 2022) 25

Proposed Approach



CS391R: Robot Learning (Fall 2022) 26

Algorithm, formally
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Formulation for Value Estimates
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Learning Objective
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Learning Objective

Value estimates depend on reward and 
value predictions…

Reward and value predictions depend 
on imagined states…

Imagined states depend on imagined 
actions…

We can use back propagation!
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Experimental Setup

❖ Performance evaluated on visual control tasks in the DeepMind Control Suite

❖ Evaluated against:

○  PlaNet, previous latent imagination state-of-the-art

○ D4PG, top model-free agent

○ A3C, state-of-the-art actor-critic method
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Experimental Results
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Experimental Results
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Discussion of Results

❖ Demonstrate that Dreamer is able to be as efficient as PlaNet while matching or even outperforming 

state-of-the-art model-free agents

❖ Show that Dreamer is able to learn long-horizon behaviors from beyond the horizon, which 

outperforms more short-sighted approaches

❖ Performance of Dreamer is affected by the method of representation learning used

○ Better representation learning performance = Better Dreamer performance
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Critique / Limitations / Open Issues 
● Ability to successfully utilize latent imagination depends on strength of representation learner

○ Limits the breadth of tasks that this can be applied to rather than traditional reinforcement 

learning

● Different Value estimation functions are not evaluated (besides the trivial one)

○ To what extent can we improve on this equation, leading to faster learning?

○ This is the main insight of the paper, yet doesn’t get very much discussion time
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Future Work

❖ Learn more complex visual tasks with sparse rewards (e.g. Atari games, addressed by DreamerV2)

❖ Apply latent imagination to more input modalities, potentially getting us closer to real-world uses

❖ Could we experiment with different, more specialized representation learning approaches to perform 

more task-specific learning through imagination?
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Extended Readings
❖ World Models

❖ Learning Latent Dynamics for Planning With Pixels (PlaNet)

❖ Dream to Explore: Adaptive Simulations for Autonomous Systems

❖ Mastering Atari with Discrete World Models (DreamerV2)

https://arxiv.org/abs/1803.10122
https://arxiv.org/pdf/1811.04551.pdf
https://arxiv.org/pdf/2110.14157v1.pdf
https://arxiv.org/pdf/2010.02193.pdf
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Summary

❖ Reinforcement learning traditionally involves many interactions with the environment

❖ Environment interactions can be computationally expensive 

❖ We can instead train in a latent space, limiting need for interactions with the environment

❖ Prior works used a fixed imagination horizon (short-sighted behaviors) and had to use derivative-free 

optimization

❖ By computing an accurate value estimation, we can perform back-propagation

❖ Achieved state-of-the-art data efficiency, computational time, and performance
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Questions For Discussion (slide hidden)
❖ So far, all the readings I have seen in this area have either been in environments for computer games 

(Tetris, Atari games, Doom, etc) or in task simulators (e.g DeepMind Control Suite). How can we apply 

these concepts towards learning to walk on a real robot? Would doing so reveal weaknesses of the 

approach?

❖ While Dreamer seems to perform remarkably well on most tasks in the DeepMind control suite, it really 

struggles on the “finger spin” task. Why is this? Could understanding this issue provide insight on 

limitations of the approach?

❖ More of an abstract question, but many times in machine learning we attempt to make artificial 

intelligence systems that model human behaviors. Is this “learning through imagination” idea 

something humans frequently do? If not, could we learn something from this different approach 

ourselves, perhaps to be better mentally prepared for upcoming challenges?


